Pulse compression for weather radars

نویسندگان

  • Ashok S. Mudukutore
  • V. Chandrasekar
  • R. Jeffrey Keeler
چکیده

Wideband waveform techniques, such as pulse compression, allow for accurate weather radar measurements in a short data acquisition time. However, for extended targets such as precipitation systems, range sidelobes mask and corrupt observations of weak phenomena occurring near areas of strong echoes. Therefore, sidelobe suppression is extremely important in precisely determining the echo scattering region. A simulation procedure has been developed to accurately describe the signal returns from distributed weather targets, with pulse compression waveform coding. This procedure is unique and improves on earlier work by taking into account the effect of target reshuffling during the pulse propagation time which is especially important for long duration pulses. The simulation procedure is capable of generating time series from various input range profiles of reflectivity, mean velocity, spectrum width, and SNR. Results from the simulation are used to evaluate the performance of phasecoded pulse compression in conjunction with matched and inverse compression filters. The evaluation is based on comparative analysis of the integrated sidelobe level and Doppler sensitivity after the compression process. Pulse compression data from the CSU-CHILL radar is analyzed. The results from simulation and the data analysis show that pulse-compression techniques indeed provide a viable option for faster scanning rates while still retaining good accuracy in the estimates of various parameters that can be measured using a pulsed-Doppler radar. Also, it is established that with suitable sidelobe suppression filters, the range-time sidelobes can be suppressed to levels that are acceptable for operational and research applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Weighting Functions Used in Oppermann Codes in Polyphase Pulse Compression Radars

Polyphase is a common class of pulse compression waveforms in the radar systems. Oppermann code is one of the used codes with polyphone pattern. After compression, this code has little tolerant against Doppler shift in addition to its high side lobe level. This indicates that the use of Oppermann code is an unsuitable scheme to radars applications. This paper shows that the use of amplitude wei...

متن کامل

Wideband Waveform Design Principles for Solid-State Weather Radars

The use of solid-state transmitters is becoming increasingly viable for atmospheric radars and is a key part of the strategy to realize any dense network of low-powered radars. However, solid-state transmitters have low peak powers and this necessitates the use of pulse compression waveforms. In this paper frequency diversity in a wideband waveform design is proposed to mitigate the low sensiti...

متن کامل

Weather Radar Network with Pulse Com- Pression of Arbitrary Nonlinear Waveforms: Ka-band Test-bed and Initial Observations

Short-wavelength radar networks are expected to complement current long-range weather radar systems. Accordingly, we proposed a configuration for such a network constituting pulse compression radars in order to use frequency resources efficiently and obtain multi-static information. We developed high resolution Ka-band pulse compression weather radar system as a test-bed. Using a commercial dir...

متن کامل

Wind observations with Doppler weather radar

Introduction Weather radars are commonly employed for detection and ranging of precipitation, but radars with Doppler capability can also provide detailed information on the wind associated with (severe) weather phenomena. The Royal Netherlands Meteorological Institute (KNMI) operates two identical C-band (5.6 Ghz) Doppler weather radars. One radar is located in De Bilt and the other one is loc...

متن کامل

Using Time Sidelobe Measurements to Assess the Performance of Compressed-Pulse Radars

Unfortunately, traditional RF pulse measurements become less effective predictors of performance in radars that use pulse compression. For example, the width of an uncompressed radar pulse is directly related to spatial resolution. In contrast, the resolution depends on pulse width, chirp bandwidth and chirp linearity in a compressed radar system that uses linear frequency modulated (LFM) chirp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 1998